Tuesday, July 16, 2019

Do FAANG Stocks Predict Dow Jones Industrial Average (DJIA)?

-- Intended for New College Graduates --



(Click on any image to enlarge)

John, a new college graduate with co-concentrations (Econ and Math) is interviewing for Equity Analyst with a major Hedge Fund. 

Interviewer: Thanks for interviewing with us, John. On that corner laptop you'll find a spreadsheet containing one year of daily closing prices - between 7/1/2018 and 6/30/2019 - pertaining to the Dow Jones Industrial Average (DJIA) and FAANG (Facebook, Amazon, Apple, Netflix and Google) stocks. Please analyze the data and give us your conclusions as to:

a) The FAANG stock that is most predictive of the DJIA so, from time to time, we could recommend it to our clients in place of the Dow ETF.

b) The FAANG stock that best represents as a hedge to the DJIA so it could be recommended as the DJIA becomes over-valued.

c) Finally, the FAANG stock that is highly predictive of the DJIA but has low multi-collinearity within the mix.

Once you are ready, just press 201 on this dial and I'll be back to talk to you.

___________________________________________________

As the interviewer returns, John presents his conclusions:

1. John -- The above correlation matrix clearly demonstrates that Amazon (AMZN) is the FAANG stock that is most predictive of the DJIA. The regression output, with DJIA as the dependent variable in the equation, further confirms it via its smallest standard error.

Interviewer -- But Netflix (NFLX) has better t-stat and lower p-value? Doesn't it contradict your conclusion?

John -- No. The correlation coefficient, which is the primary metric here, makes Amazon a far better (DJIA) predictive choice than Netflix.

2. John -- Of the FAANG components, Facebook (FB) is best hedge as it has the lowest correlation with DJIA. The regression out also confirms it via its negative coefficient.

Interviewer -- Would it be okay to recommend Facebook as a DJIA hedge to our clients?

John -- If the choice is limited to the FAANG complex only, yes. But there are other ETFs with much lower correlations with DJIA. I'd rather research and recommend one from the outside universe.     

3. John -- Apple (AAPL) is the FAANG stock that is highly predictive of the DJIA, but has lower multi-collinearity with the other components. The graph shows how Apple diverges from Facebook (which is the inside hedge component) with very low r-squared.

Interviewer -- Would you play the FAANG complex? If so, how?

John -- Each component has its own contributory properties so the complex as a whole makes a good investment vehicle. I would play it via a liquid FAANG ETF and as the DJIA becomes over-valued I would introduce an ETF with good hedging property.
   
Disclaimer - The author is not advocating the stocks/indices listed here. Consult your Registered Rep, RIA or Financial Planner for an appropriate asset allocation model and the suitability of stocks, indices and other holdings for your portfolio.


Good Luck!

Sid Som, MBA, MIM
President, Homequant, Inc.
homequant@gmail.com

Thursday, July 11, 2019

How to define Options Strategy from a Technical Chart


(Click on the image to enlarge)

Question #1
Interviewer: Would you consider this a strong technical chart? What sort of trend do you see here?

Candidate: Yes, it is a good technical chart with a strong linear trend.

Question #2
Interviewer: Why do you think it's a strong linear trend?

Candidate: When the R-squared is approaching 0.90, it is considered strong, if not very strong.

Question #3
Interviewer: Do you think the weekly closing prices would have made the chart more meaningful?

Candidate: No. Since you are using only 6 months of data here, daily closing prices are better. Weekly would be better if you were using at least 12 months of data. 

Question #4
Interviewer: What is the best inflection point on the chart?

Candidate: Around the 90th trading day when the stock reversed its direction from under $10 and started making sharp upward move.  

Question #5
Interviewer: Would you still consider that stretch linear?

Candidate: No. That particular stretch of data shows more of an exponential trend than linear trend. Of course, the overall trend is still linear.

Question #6
Interviewer: If you were analyzing that stretch of data only, would you have seen any difference in stats?

Candidate: Yes. The R-squared would be higher, perhaps around 0.90 (it's actually 0.90, though not shown).

Question #7
Interviewer: As one of our market analysts, would you advise our clients to sell covered calls now?

Candidate: No. When a stock keeps making higher highs everyday, I would not advise selling covered calls. I will let it continue its run, for now.

Question #8
Interviewer: When do you think it's appropriate to sell covered calls?

Candidate: When the stock breaches a major support like the 120-day moving average.   

Question #9
Interviewer: How would you decide what kind of covered call to sell? 

Candidate: If the decline is really sharp, I will sell in the money or deep in the money. If it is just trending down, I will sell at the money anticipating a short consolidation and then a quick reversal.  

Disclaimer - The author is not advocating the stocks/indices listed here. Consult your Registered Rep, RIA or Financial Planner for an appropriate asset allocation model and the suitability of stocks, indices and other holdings for your portfolio. 




Sid Som, MBA, MIM
President, Homequant, Inc.
homequant@gmail.com

Sunday, July 7, 2019

Does VIX Really Move in Tandem with S&P 500?

-- Intended for New Graduates --

VIX is the implied volatility index derived off the S&P 500, so it has become one of most widely watched and followed market metrics in the financial world, since its very inception. 

Many professional traders still define their market entry and exit based largely on the movement of the VIX and their  primary stock trading mantra continues to be:


"When VIX is high, it's time to buy.
When VIX is low, it's time to go."

So, let's use some recent market data (July 1, 2018 thru June 30, 2019) to examine if the S&P 500 index and VIX truly move in tandem and, if so, to what extent (meaning the extent of their statistical relationship).




As a student, you might have used the weekly closing data to establish such relationships, but now that you are ready to enter the corporate world, start making your case more emphatically with both daily and weekly closing data, where the daily serves as the "Champ" while the weekly "Challenges."

Though the correlation coefficient is the primary metric to derive and demonstrate such a relationship, a scatter plot with the trendline and the R-squared is as important considering it offers a more compelling visual case showing the line of best fit relative to the datapoints. 

In this instance, the correlation matrix of daily closings shows a high inverse correlation (-0.828) between them, meaning they move in tandem (not necessarily in lockstep) but in opposite directions. The daily scatter plot also confirms the same inverse relationship, with a fairly high R-squared (0.716). 

Therefore, the professional traders tend to use the VIX Options to hedge the S&P 500 Index (loosely, a long-short strategy).




As you expect, the correlation matrix of weekly closings would show a similar but smoother inverse relationship, and it certainly does (-0.842).



Likewise, the weekly scatter plot shows the same inverse relationship, as well as a negative trendline, predictably with a slightly tighter fit and a higher R-squared (rising to 0.747). 


PART-2


Now, let's simulate a job interview and frame a few meaningful questions out of the above presentation (remember, in a job interview they are not going to ask you some straight-forward questions like the definition of VIX or the S&P 500 Index, etc.)...

1. Interviewer: Megan, look at this Daily Scatter Plot and tell me if X and Y have been correctly graphed.

Megan: Yes, because VIX is a derivative of the S&P 500 index, and not the other way around. Using the basic math construct of Y is a function of X, VIX has been corrected depicted on the Y-axis.

2. Interviewer: Other than the two slightly different R-squared values, do you see any other difference between the Daily and Weekly Scatter Plots?

Megan: Yes, two basic differences: (a) obviously, the Daily plot has roughly five times more datapoints than the Weekly one, and (b) as expected, the Weekly Plot is smoother.

3. Interviewer: Do you see any technical inconsistency between the two scatters?

Megan: Yes, one. The X-scales are slightly different. They should have been held constant. 

4. Interviewer: Why do you think the Daily Correlation Coefficient is different from the Daily R-squared?

Megan: They are not apples-to-apples. The underlying maths are different. The Correlation Coefficient shows the overall statistical relationship between two variables, while R-squared shows to what extent (as a %) the independent variable explains the variations in the dependent variable.

5. Interviewer: As a follow-up to the prior question, why is the Daily Correlation Coefficient negative while the R-squared is positive?

Megan: Adding to my prior answer, the Correlation Coefficient can vary between +1 and -1, while the R-squared varies between 0 and 1 (cannot be negative), hence the difference. 

6. Interviewer: Why do you think we didn't show you any Regression output(s)?

Megan: Because it's a simple regression construct here, meaning one independent variable to the dependent variable. Had it been a multi-variate event, you would have produced a multiple regression output with the respective parameter estimates and the associated statistics.

7. Interviewer: You just indicated that had it been a multiple regression, we would have produced the respective parameter estimates with associated statistics. What sort of associated statistics would you have expected to see?

Megan: At a minimum, Standard Errors, T-stats and P-values.
   
8. Interviewer: Take a look at the two Scatter Plots and try to explain why a non-linear Trendline has been forced in.

Megan: Because of the slight tilt-up in the data at the outer end; I mean the most recent data seems to be bucking the trend a bit.  

9. Interviewer: Any guess as to the type of the Trendline?

Megan: Looks like, it's a 2nd or 3rd degree Polynomial.

Interviewer: Megan, we've a few more interviews this week so expect to hear back from us sometime next week. By the way, did you learn all this at school?

"No. My mom taught me."

Good Luck!

Disclaimer - The author is not advocating VIX or indices listed here. Consult your Registered Rep, RIA or Financial Planner for an appropriate asset allocation model and the suitability of stocks, indices and other holdings for your portfolio.


Sid Som, MBA, MIM
President, Homequant, Inc.
homequant@gmail.com